Mission: Interactive Materials

The DWI is a research institute that takes on the challenge of surpassing disciplinary limits and tackling new questions relating to substances and materials that combine technology and nature. It is a location at which people with different talents, experiences and skills work together, in order to learn from one another and generate new knowledge and new methods to create a better quality of life in our world.

The name Leibniz Institute for Interactive Materials stands for DWI's objective to develop materials with new functions that were previously only known from living matter.

This concerns the material's ability to

  • adapt its properties to changing external conditions,
  • change its shape,
  • self-heal occuring defects, and
  • control the interaction with living matter.

These innovative materials will enable advances in the medical and hygiene sectors as well as in the areas of mobility, the environment and sustainability, thus contributing to shaping our lives in the best possible way.

In order to overcome the diverse challenges facing society, it is necessary for experts from different disciplines to cooperate closely. Therefore, scientists from biotechnology, chemistry, physics and process engineering work together at the DWI.

Vision & Mission

The work performed by the DWI focuses on research, development and the translation of concepts for a molecular technology that uses the wide range of molecular structures and self-assembly processes in combination with technical structuring processes to enable advanced material functions. Due to the arrangement of molecular structures and the programmed process by which molecules form a system, soft matter is unlike any other class of material with regards to the new possibilities it opens up for the development of new physical, chemical, and biological functions in harmony with the principles of nature. The connection to nature that is inherent in material research focusing on soft matter is associated with three challenges: compatibility with living organisms and natural cycles, integration of natural building blocks for the development of new materials, and last but not least, the challenge of studying the structural organization of natural materials and learning how these can be used to enable new, highly advanced functions and properties.

If you compare synthetic materials with naturally grown matter, it is immediately apparent how much more diverse and complex the structures of the latter are. A characteristic feature of naturally grown matter is hierarchic structures in which molecules form functional units, which are in turn grouped together to form larger units. Due to the complexity of the structure and the interaction between the components, the information that is necessary to comprehensively describe a biological structure – be it a piece of wood or even a living cell – is significantly more extensive than that required to describe a simple synthetic material. In addition to the control of structural formation across many length scales, the high functionality of biological matter is also based on the selection of intelligent structures from the endless range of options. The atoms and molecules of biological matter are usually connected to one another in accordance with a complex structural design, which has been developed by the mechanisms of evolution to perform optimally.

Other topics

How we work


For achieving actual progress in the field of material development, you need more than the knowledge of a single research discipline.

How we work


The DWI - Leibniz Institute for Interactive Materials is an independent research institute that is part of the Leibniz Association and is located on the Melaten campus of RWTH Aachen University. The institute is a registered association whose various organs set the course for successful research work.